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This study develops a robust asset-level revenue forecasting model for wind power assets in the UK 
electricity market, integrating half-hourly generation data from Elexon BMRS, market pricing from 
OFGEM, and power price projections from Oxford Economics. The model estimates P10, P50, and 
P90 revenue levels under multiple economic scenarios, providing insight into revenue the revenue 
of wind assets in the UK.

A back-analysis of 58 wind farms (2019–2023) validates the model’s accuracy, with an R² of 94% 
for generation forecasts and 80% for revenue forecasts. 

A key application of these revenue forecasts is their integration into the infraMetrics Valuation 
Model, which estimates the fair market value of unlisted infrastructure equity investments. By 
providing detailed asset-level revenue projections, this study strengthens valuation accuracy for 
TICCS Industry class code IC70 (renewables) in the UK, with planned expansion into other markets.

This methodology moves beyond a static approach to revenue growth forecasting by capturing 
asset-specific dynamics, providing a more adaptive way to assess valuations within infraMetrics. 
Our initial analysis showed that the updated methodology enhanced revenue forecast accuracy 
for individual wind farms by 2% to 39% compared to reported figures and past forecasts, with a 
median adjustment of 22%.
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The UK electricity market was chosen as the focus of this study due to its high transparency and 
the availability of high-quality data. Market participants are required to report power production, 
pricing, and other key metrics, ensuring that all datasets can be fully traced and verified. While the 
European electricity market also exhibits a high level of transparency, the complexity of multiple 
countries and operators can create additional challenges in data collection and standardization. 
Given these factors, the UK provides an ideal foundation for developing and validating the 
forecasting methodology.

Furthermore, this study aligns with our broader objective of expanding revenue forecasting models 
to European markets, where we have already identified key data sources. The UK serves as a natural 
starting point due to its well-structured market and strong regulatory framework. Additionally, the 
study has strategic relevance to our flagship infrastructure equity index, infraGreen, which tracks 
the performance of unlisted infrastructure firms in the wind and solar sectors. UK renewable assets 
comprise 20% of the index, the highest share of any individual market, with wind power making 
up the majority.
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The UK’s electricity generation mix has evolved significantly during the last decade driven by the 
energy transition. The country has set a legally binding target to achieve carbon neutrality (net 
zero emissions) by 2050. Decarbonizing the energy sector has been a huge bet for the country as 
it used to be the highest emitting sector since the 1990s, but during the last decade the level of 
emission from energy have been declining significantly, as electricity is being generated by low 
carbon sources such as wind, solar, biomass and gas has soared.

As shown in Figure 2, gas has been the largest source of electricity in the UK in the recent years 
followed by renewable energy sources, primarily wind (both onshore and offshore).

Specifically, in the case of wind installed capacity has been growing strongly in recent years and 
as a result generation has skyrocketed. Combined onshore and offshore wind installed capacity 
reached almost 28 GW in 2023 as shown in Figure 3.

Figure 1: Infragreen index segment allocation by country

Source: Inframetrics

Figure2: Evolution of energy generation mix in the UK

Source: Elexon
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Figure3: UK wind power installed capacity

Source: Dukes

Figure 4: Monthly renewable electricity generation by technology

Source: Elexon

Wind generation is subject to seasonal variability, though to a lesser extent than solar power. As 
shown in Figure 4, wind generation is significantly higher in winter compared to summer, whereas 
solar power follows a more predictable seasonal pattern, with minimal production in winter and 
substantially higher output in summer. Despite its relative stability, wind generation can still 
experience prolonged periods of low output, known as wind droughts, which have been observed 
in recent years. 

As shown in the map in Figure 5,most wind projects have been developed in rural areas or far 
offshore away from big cities and large industrial centres, where wind resources are abundant and 
there are less spatial constraints.
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Figure 5: Operational, under development & construction wind projects in the unal, under developent & construction 
wind projects in the unal, under developent & construction wind

Source: Renewable energy planning database

However, increasing decentralised build-out of wind capacity and high generation have created 
certain issues to the power grid as electricity has to be transported from remote locations to 
demand centres to be consumed.

Electricity Market Structure 
The electricity market in Great Britain operates under a competitive framework designed to maintain 
a continuous balance between electricity supply and demand in real-time, a necessity due to the 
non-storability of electricity. The market involves three primary participants:
• Generators: Responsible for producing electricity.
• Suppliers: Procure electricity to meet customer demand.
• Financial participants.

Electricity is traded and settled in half-hour intervals, referred to as Settlement Periods, which form 
the basic unit for operational and financial activities in the market. For each Settlement Period:
• Suppliers forecast customer demand and contract with generators to match this expected load.
• Contracts can be agreed upon until the Submission Deadline, which is the start of the Settlement 
Period.
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However, despite contractual arrangements, real-time mismatches between forecasted and actual 
demand or generation often arise due to:
1. Forecasting errors by suppliers.
2. Unforeseen generator outages or shortfalls.
3. Transmission constraints impacting delivery.

To manage these imbalances, the Electricity System Operator (ESO), operated by National Grid, 
deploys the Balancing Mechanism. This mechanism facilitates real-time adjustments through:
• Bids: Proposals by participants to reduce generation or increase demand at a specified price.
• Offers: Proposals to increase generation or reduce demand at a specified price.

The ESO dynamically selects and dispatches the most cost-effective bids or offers to balance the 
grid while addressing system constraints, such as congestion or localized supply shortages.

Additionally, the system incentivizes accurate forecasting and contract adherence through the 
Imbalance Settlement process. Metered volumes are compared to contracted volumes, and any 
deviations—referred to as imbalances—are settled financially:

Generators or suppliers that underperform relative to their contracts must purchase the shortfall 
at the imbalance price.

Conversely, overperforming participants sell their excess generation or unused supply back to the 
system at the same price.

Pricing Model
The UK electricity market operates primarily through two main mechanisms: the day-ahead market 
and the intraday market.

In the day-ahead market, electricity prices are determined by balancing daily supply and demand. 
Generators submit bids to provide electricity to the grid, with these bids organized in a merit order—a 
system that ranks bids from the lowest to highest marginal cost of generation. Electricity sources 
with the lowest operating costs, such as renewables, are prioritized, while higher-cost sources 
like gas- and coal-fired power plants are dispatched later. This ranking reflects the fundamental 
principle of minimizing system costs and optimizing resource efficiency.

The bidding process takes place on Nord Pool UK’s power exchange, where bids are accepted 
sequentially until forecasted demand is satisfied. Renewables, with their near-zero marginal costs, 
typically dominate the initial accepted bids, whereas gas and coal plants, with higher operational 
expenses and additional costs for carbon allowances, are dispatched later

As shown in Figure 6 electricity prices during each half-hour trading period are set based on 
the marginal cost of the last generating unit required to meet demand. This system, known as 
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a «pay-as-clear» model, ensures that all accepted generators are paid the same market-clearing 
price, regardless of their individual bid values. Buyers, such as energy suppliers or traders, pay this 
clearing price to sellers, including energy generators or other traders.

Figure 6: Illustration of the merit order system for electricity generators

In the UK, gas-fired generation frequently acts as the marginal producer, given its relatively high 
cost compared to other sources. Consequently, gas-fired plants often set the market-clearing price. 
Despite their higher costs, gas plants are highly flexible and capable of ramping up quickly to 
address short-term demand spikes, particularly during peak periods.

Figure 7: UK power prices

Source Elexon
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Since late 2021, there has been a substantial increase in UK electricity prices (Figure 7) which was 
primarily driven by a surge in the price of gas. Electricity prices went from an average of £46/MWh 
during the period of 2010-2019 and a low of £36.9/MWh in 2020 (due to suppressed demand 
during lockdowns) to an average of £127/MWh in 2021 and £210/MWh in 2022, with the maximum 
monthly price reaching as high as £363/MWh.

The increase in electricity price from the average of the period 2010-2019 to the 2021 and 2022 
prices was 175% and 355% respectively.

In a nutshell, this massive increase in gas prices was primarily caused by supply chain bottlenecks 
during the COVID-19 pandemic lockdowns as companies started cutting down production to respond 
to plummeting demand at first and then were not able to keep up with increasing demand as 
economies started gradually reopening at variable speed. On top of this the crisis was augmented with 
the Russian invasion to Ukraine in February 2022 that led many countries especially European ones to 
try reducing imports of Russian gas and trying to find alternative sources, mainly LNG. All the above led 
to unprecedented supply deficit on the gas markets which made prices go through the roof.

The UK was caught in the middle of this storm as a major gas importer that relies on gas for both 
power and heating.

In the latest years, gas and electricity prices came down a lot, almost back to pre-covid levels for 
gas, the danger of another supply deficit driving prices skyrocketing again.

Government Support Schemes for Renewable Energy
Government Support schemes have been determinantal in driving the expansion of renewable 
energy in the UK. The main schemes for large scale wind projects that we’ll examine in this report 
are Renewable Obligations (RO) and Contracts for Differences (CfD).

The Renewables Obligation (RO) is a policy framework established to encourage the deployment 
of large-scale renewable electricity generation in the United Kingdom. The scheme was introduced 
in England, Wales, and Scotland in 2002 and closed to new entrants as of March 2017, but it 
remains a critical part of the UK’s renewable energy policy landscape for operating generators.

Under the RO, licensed electricity suppliers in the UK are required to source a specified proportion 
of the electricity they provide to customers from eligible renewable sources. This obligation is 
enforced and monitored by the Office of Gas and Electricity Markets (Ofgem). The scheme is limited 
to large-scale renewable electricity generators larger than 5 MW.

ROCs are tradable certificates issued to accredited renewable electricity generators as evidence of 
renewable energy production. They serve as the primary mechanism for demonstrating compliance 
with the RO. A ROC is awarded for every megawatt-hour (MWh) of eligible renewable electricity 
generated.
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The number of ROCs awarded per MWh depends on the type of renewable technology employed. 

This is referred to as ‘banding’ and aims to reflect the varying costs and benefits of different 
technologies. For example:
• Offshore wind: 2 ROCs per MWh
• Onshore wind: 0.9 ROCs per MWh

These banding levels are reviewed periodically to ensure cost-effectiveness and to incentivize 
emerging technologies.

Currently, the Contract for Differences (CfDs) is the most common subsidy scheme used in the 
UK for electricity producers with greater capacity than 5 MW. CfDs were introduced following 
the Electricity market reform in 2014 in order to provide clean power generators with long term 
stability of cash flows and protection against wholesale electricity price fluctuations.

The CfD support scheme stabilizes revenues by guaranteeing a certain price level for the producer 
known as the ‘strike price’. The strike price is the electricity price that reflects the cost of investing 
in a particular low carbon technology. The CfDs represent a two-way payment process. When 
wholesale electricity prices are below the strike price the generator receives the difference between 
the two and when electricity prices exceed the strike price the generator has to pay back the 
difference. The organization which deals with the CfD mechanism is the independent government-
owned company called Low Carbon Contracts Company (LCCC).

The CfDs are allocated to low carbon electricity generations through auctions for 15 years. Before 
every auction round the government sets an administrative strike price for each technology that 
represents the maximum support it is willing to offer. The clearing price for each year of expected 
delivery is determined by the last bid made for a project in that delivery year. 

Administrative strike prices tend to decrease in each allocation round to incentivize competition 
and innovation. These prices are set based on the most recent renewable energy generation cost 
data. The objective of this procedure is to create a projects’ supply curve which represents the 
“estimated volume of capacity in MW that could be built at different strike prices, ranked from 
cheapest to most expensive”. 

The results from the six CfD allocation rounds presented in Figure 8, clearly indicate the cost 
reduction achieved throughout the seven-year period.
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Figure 8: CfD price (administration & clearing) per allocation round for selected technologies

Source: LCCC

Negative Prices and Capture Price
As mentioned earlier, high renewables penetration coupled with the lack of storage and grid 
limitations creates the issue of cannibalization, either due to lack of demand or lack of available 
grid, power producers (primarily wind) are incentivised to turn down production through negative 
prices and are compensated for it.

In recent years, the UK power market has faced challenges related to electricity price cannibalization 
and curtailment. Price cannibalization occurs when the increasing penetration of renewable energy, 
particularly during periods of high generation and low demand, drives wholesale electricity prices 
down—sometimes even into negative territory. This phenomenon disproportionately affects variable 
renewable energy especially wind in the UK, whose generation patterns are dependent on weather 
conditions. Negative pricing events, where generators must pay to dispatch electricity to the grid, 
have become more frequent, particularly during off-peak hours or when weather conditions are 
highly favourable for renewable generation. As presented in Figure 9, in 2024 the UK saw a pick 
in the number of negative hours to more than 240 based on the APXMIDP price index provided by 
Elexon.

Figure 9: Annual count of negative & zero price hours

Source: Elexon
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Curtailment further compounds generators’ challenges. Renewable producers are occasionally 
instructed to reduce or stop their output to prevent overloading the grid. This often occurs due to 
limitations in grid infrastructure or imbalances between supply and demand. 

Both situations expose wind power producers to increasing market revenue risk. Since 2022, the 
capture rate for wind generation has fallen to approximately 90% of the average market price as 
shown in Figure 10. 

The capture rate is a measure of the average price that a renewable generator receives for its 
electricity relative to the average market price. It reflects the value of electricity generated by 
specific technologies in the market and is expressed as a percentage.

Figure 10: Annual capture price by technology vs market price

Source: Elexon

This decline highlights the growing impact of price cannibalization, where increased renewable 
penetration lowers wholesale prices during peak generation periods, reducing revenue for wind 
asset operators.
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Our methodology utilizes a comprehensive set of publicly available and subscription-based datasets 
to evaluate historical and forecast revenue streams for individual assets in the UK electricity 
market. The datasets used include hourly electricity generation, pricing, subsidy schemes, and long-
term market projections, providing a robust foundation for both historical calibration and future 
forecasting.

Generation Data from Elexon BMRS
Data from Elexon’s Balancing Mechanism Reporting Service (BMRS) forms the backbone of the 
analysis for asset-level performance. The specific endpoints used are:
B1610: Half-Hourly Generation Output: This dataset provides granular, half-hourly generation 
data for individual assets, enabling detailed analysis of production trends and probabilistic metrics 
such as P10, P50, and P90 generation values. 
B1420: Installed Capacity per Unit: Information on the nominal installed capacity of each generating 
unit is used in conjunction with generation data to calculate key performance indicators, such as 
capacity factors. 

These datasets facilitate an in-depth understanding of the historical performance of generating 
assets and allow for accurate projections of future output.

Historic Electricity Prices
Historic electricity prices, sourced from OFGEM, are essential for calibrating the revenue model. 
These prices, combined with generation data, enable the estimation of realized revenues for 
individual assets over time.

Renewable Obligation (RO) Scheme
Historic RO Prices: Data from OFGEM provides historical values of Renewable Obligation Certificates 
(ROCs), which represent the tradable certificates awarded per megawatt-hour of eligible renewable 
generation.

RO Banding: This dataset specifies the banding levels, which determine the number of ROCs 
allocated per megawatt-hour based on the asset type. By integrating these datasets, the revenue 
model accounts for the historic contributions of the RO scheme to generator income.

Contracts for Difference (CfD) Scheme
For assets contracted under the Contracts for Difference (CfD) scheme, data from the Low Carbon 
Contracts Company (LCCC) is used. This data is critical for assessing historic revenues and validating 
forecasts for assets benefiting from CfD contracts.

Forecast Data
To project future revenues, the study incorporates premium datasets from Oxford Economics Global 
Climate Scenarios:

UK Power Prices (to 2050): Long-term forecasts of electricity prices provide the basis for estimating 
future revenues under both market and subsidy conditions.
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Inflation Expectations (to 2050): Inflation forecasts are used to model the real-term evolution of 
subsidy prices, such as ROCs and CfDs. This ensures consistency between historical calibrations and 
future revenue projections, accounting for macroeconomic influences.

By combining these datasets, the study establishes a detailed model for both historic and forward-
looking revenue analysis at the individual asset level. Historic data is leveraged to validate and 
calibrate the model, ensuring alignment with actual performance. Forecast data extends the 
analysis into the future, providing insights into revenue trends under varying market conditions 
and policy frameworks.
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This study employs a systematic and data-driven methodology to estimate the historical and 
forecasted revenues of individual power-generating assets in the UK electricity market. As discussed 
above the approach integrates granular production data, subsidy schemes, market pricing, and 
long-term forecasts to achieve a comprehensive asset-level revenue analysis. The key steps in the 
methodology are outlined below:

Data Integration and Initial Processing
The primary datasets include Elexon BMRS (B1610 and B1420), OFGEM pricing and subsidy data, 
LCCC CfD price data, and Oxford Economics forecasts for power prices and inflation. All data 
sources ans the specific data sets used for the analysis have been discussed in detail in the section 
Data Sources.

Data Handling:
Half-hourly generation data (B1610) and installed capacity data (B1420) from Elexon are analysed  
to calculate generation metrics, including the P10, P50, and P90 production levels and capacity 
factors for each generating unit.

Charts indicating the distribution of capacity factors, like Figure 11, have been produced for each 
independent generation unit. The indicative example in the below figure shows the capacity factor 
distribution for Achruach and Aberdeen Bay wind farms. Additionally, distribution curves indicating 
the mean capacity factor distribution by technology like Figure 12 and Figure13 have also been 
constructed.

Start dates of generation assets are sourced from Elexon, with assumed lifetimes of 25 years. 
Subsidy durations are standardized at 20 years for RO and 15 years for CfD schemes.

2. Identification of Revenue Streams

Subsidy Allocation: Each generating asset is classified as operating under Renewable Obligation 
(RO), Contracts for Difference (CfD), or exposed solely to merchant market conditions based on its 
commissioning date and subsidy eligibility.

Revenue Stream Calculation:
For RO-eligible assets, revenues are split into:
• RO Revenue: Calculated using the banding multiplier, the ROC price for the respective year, and 
the annual generation.
• Market Revenue: Determined by multiplying annual generation with the historic or forecasted 
market price.

For CfD assets, revenues are based solely on CfD strike prices during the CfD period.

Merchant assets’ revenues are derived exclusively from market prices.
Historical revenue streams are computed using published OFGEM and LCCC data to calibrate the 
model against observed financial outcomes.
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Forecasting Future Revenues
Inflation Adjustments: Future ROC and CfD prices are adjusted for inflation using Oxford Economics’ 
Global Climate Scenarios consumer price index (CPI) forecasts, with unique strike prices maintained 
for each CfD asset.

Market Revenue Projections: Future market revenues are estimated also using power price outlooks 
up to 2050 from Oxford Economics’ Global Climate Scenarios, with adjustments made for asset-
specific lifetimes and subsidy expiry.

Scenario Analysis: Multiple economic scenarios provided by Oxford Economics Global Climate 
Scenarios are incorporated to assess the sensitivity of revenue forecasts to varying market 
conditions and policy trajectories. 

Figure11: Indicative example of capacity factor distribution of individual wind farms

Filters are applied to exclude negative generation figures, typically associated with storage assets 
or anomalies.
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Figure12: Offshore wind capacity factor distribution

Figure13: Onshore wind capacity factor distribution

Figure 14: P50 capacity factor vs registered capacity per asset by technology
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In Figure 15, are the scenarios used in our modelling are presented. Note that we currently only 
use the Baseline scenario for all our analysis and valuation process. Furthermore, we analyzed the 
P50 capacity factor relative to registered capacity for each technology across all individual assets, 
as shown in Figure 14. 

This analysis aimed to investigate potential positive correlations between technology, asset size, 
and capacity factor while also identifying potential outliers within the sample.

Revenue calculations are performed for each probability level (P10, P50, P90) to capture the 
variability in generation outputs. Total revenues are consolidated across all streams:
• Historic Revenues: Based on actual generation and market/subsidy conditions.
• Projected Revenues: Incorporating forecasted subsidy and market prices until 2050 or the end of 
each asset’s operational lifetime.

Figure15: Nominal market price by year for all scenarios



Outputs and Analysis

21

The final dataset includes detailed revenue forecasts for all assets in the UK Balancing Mechanism 
under different economic scenarios.

Key metrics include total revenues, scenario-specific variations based on Oxford Economics, and 
P10, P50, and P90 revenue levels for the baseline scenario. These metrics enable a comprehensive 
evaluation of revenue performance across different probability levels and economic scenarios, 
providing a robust understanding of potential outcomes under varying market conditions.

In Figure 16, an illustrative example of the revenue forecast of Aberdeen bay wind farm is presented. 
The green line represents the historic revenue , the blue solid line the forecast P50 baseline scenario 
revenue, and the dashed lines represent the P10, and P50 revenues in the baseline scenario. Similar 
illustrations have been generate for all the UK wind assets included in the analysis. 

All revenue forecasts are expressed in nominal terms, incorporating inflation expectations to reflect 
anticipated price evolutions over time. This approach ensures a clear and consistent framework for 
analyzing long-term revenue trends across the UK electricity market.

Figure 16: Indicative revenue forecast including sensitivity analysis for Aberdeen Bay Wind Farm

 

In Figure17, We present the P50 revenue forecast for all Oxford economics scenarios for Aberdeen 
Bay wind farm. As discussed in Figure 16, we have generated P50 revenue scenarios for all UK wind 
assets included in our database. However,, note that while the forecast model evaluates revenue 
under multiple economic scenarios provided by Oxford Economics and probability distributions, we 
only use the P50 baseline scenario revenue forecast for valuation purposes.

A notable feature of the revenue forecast is a decline in projected revenues for many assets starting 
in the mid-2030s. This trend aligns with the expiration of subsidy schemes such as Renewable 
Obligation (RO) and Contracts for Difference (CfD), which typically provide stable revenues during 
their operational periods. 
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Once these subsidy schemes conclude, the affected assets are modelled to transition fully to reliance 
on merchant market prices. This shift introduces greater revenue variability and lower overall price 
levels based on current projections.

This methodology ensures a robust analysis of asset-level performance and future revenue potential, 
enabling to move forward with assets’ valuation and free cash flow projections.

Figure 17: Indicative revenue forecast including all Oxford Economics Scenarios for Aberdeen Bay Wind Farm
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To validate the revenue prediction model, we conducted 2 individual back-analysis using data 
from the actual asset wind production and revenue figures from the latest available financial years 
(2019–2023). 

The analysis focused exclusively on wind energy assets, comprising a sample of 58 onshore and 
offshore wind farms in the UK. In the first part the predicted values of power generation were 
compared to the actual output of the wind farm for the years 2019-2024. The log-transformed 
approach was applied to all dependent and independent variables to control for scale effects. 

As shown in Figure 18 the predicted power generation exhibit a strong fit to the observed data , the 
analysis confirms the models’ robustness regarding wind power generation as it has an R-squared 
of 94%. 

In the second part of the validation process for the revenue forecasting model, a regression analysis 
was conducted to evaluate the relationship between reported revenues (observed) and calculated 
revenues (predicted by the model) for individual wind assets. 

Figure 18: UK wind farms production: predicted vs reported (2019-2023)

This analysis aims to quantify the model’s predictive accuracy and assess whether asset 
characteristics, such as capacity, explain variations in revenue deviations. As the analysis highlighted 
that larger wind farms exhibited greater revenue variability, prompting the inclusion of registered 
capacity (size) as a second independent variable to control for this effect. The log-transformed 
approach was also applied to all dependent and independent variables to control for scale 
effects. 

The results of this analysis are presented in Figure 19 and Figure 20. In both charts a high degree of 
alignment between the model predictions and actual values is demonstrated.
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As discussed above the second regression model incorporates both reported revenue (X1) and 
registered capacity (X2). The results demonstrate a high explanatory power in the model, with an 
R² of 0.80. These results demonstrate a high degree of alignment between predicted and reported 
revenues:

Figure 19: Uk wind farm revenues: predicted vs reported revenue (2019-2023)

Figure 20: UK wind farm revenues: registered capacity vs reported revenue (2019-2023)
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The above results affirm the model’s robustness in accurately forecasting revenue streams for wind 
assets under varying operational and market conditions. Based on this strong correlation, we are 
confident in the model’s ability to predict revenues for individual wind assets with a high degree 
of precision.

The revenue forecasts developed in this study are set to become a key input into the infraMetrics 
Valuation Model, enhancing the precision of infrastructure asset valuation in the UK. By incorpo-
rating asset-level generation probabilities and future revenue projections, this integration will im-
prove the accuracy of discount rate estimations, expected cash flows and NAVs ensuring valuations 
align more closely with real market conditions.

Initially, these forecasts will be applied to IC70 renewable assets in the UK, strengthening financial 
modelling and risk assessment. Further expansions into additional markets are planned, levera-
ging the methodology developed in this study to support comprehensive, market-driven valuations 
across all our universe.
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Methodology for Estimating Capacity Factors Using Renewables.ninja Data
To establish an alternative methodology for calculating capacity factors for assets in the UK and 
mainland Europe, we utilized “Renewables. Ninja”, an open-access platform that provides simulated 
hourly capacity factors for renewable energy assets. These simulations, based on validated reanalysis 
and satellite data from 1989 to 2019, were developed to complement asset-level production data 
from Elexon in cases where granular data is unavailable, particularly for other technologies like 
solar and regions beyond the UK.

Figure 21: Average wind capacity factor by region in Great Britain

Hourly capacity factor data for each NUTS 2 region, as shown in Figure 21, was sourced from 
Renewables.ninja, incorporating variations due to local meteorological conditions, turbine 
characteristics, and geographic attributes. Wind farms listed in the UK Balancing Mechanism 
dataset were matched to their respective NUTS 2 regions using geographic coordinates, aligning 
Elexon data with the regional capacity factors provided by Renewables.ninja. 

For offshore wind farms, capacity factors from the nearest onshore NUTS 2 region were used due 
to the absence of specific offshore data. This approach introduces minor inaccuracies as offshore 
wind speeds are generally higher, resulting in slightly underestimated capacity factors. Additionally, 
there is a gap in the data of Renewables Ninja for certain NUTS 2 codes in Scotland. The estimated 
wind farm capacity factor per UK NUT2 region are illustrated in Figure 22.

To validate this method, P50 capacity factors derived from Elexon’s B1610 historic data were 
compared with the regional averages from Renewables.ninja. For a sample of 37 wind farms, the 
mean squared difference between the two datasets was calculated at 2.1%, as shown in Figure 23 
demonstrating a high level of agreement. This validation highlights the robustness of Renewables.
ninja data as a proxy for estimating historical and regional capacity factors.
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Figure 22: Average wind capacity Factor by NUTS in the UK

Figure 23:  Comparison of capacity factors for wind in the UK between different methodologies

This methodology provides a scalable and reliable alternative for analyzing capacity factors in 
contexts where asset-level production data is unavailable. It supports scenario analysis by offering 
insights into historical performance and future capacity expansion strategies and facilitates inter-
regional comparisons of renewable energy performance across Europe. While the reliance on 
onshore proxies for offshore wind farms introduces minor limitations, this approach effectively 
complements detailed analyses and broadens the applicability of revenue forecasting models 
to various geographies and technologies where granular asset level production data is not 
available.
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Disclaimer
The information contained on this proposal (the «information») has been prepared by EDHEC Infra & Private 
Assets solely for informational purposes, is not a recommendation to participate in any particular investment 
strategy and should not be considered as an investment advice or an offer to sell or buy certain securities.

All information provided by EDHEC Infra & Private Assets is impersonal and not tailored to the needs of 
any person, entity or group of persons. The information shall not be used for any unlawful or unauthorised 
purposes. The information is provided on an «as is» basis.

Although EDHEC Infra & Private Assets shall obtain information from sources which EDHEC Infra & Private 
Assets considers to be reliable, neither EDHEC Infra & Private Assets nor its information providers involved 
in, or related to, compiling, computing or creating the information (collectively, the « EDHEC Infra & Private 
Assets Parties») guarantees the accuracy and/or the completeness of any of this information.

None of the EDHEC Infra & Private Assets Parties makes any representation or warranty, express or implied, 
as to the results to be obtained by any person or entity from any use of this information, and the user of this 
information assumes the entire risk of any use made of this information. None of the  EDHEC Infra & Private 
Assets Parties makes any express or implied warranties, and the EDHEC Infra & Private Assets Parties hereby 
expressly disclaim all implied warranties (including, without limitation, any implied warranties of accuracy, 
completeness, timeliness, sequence, currentness, merchantability, quality or fitness for a particular purpose) 
with respect to any of this information.

Without limiting any of the foregoing, in no event shall any of the EDHEC Infra & Private Assets Parties have 
any liability for any direct, indirect, special, punitive, consequential or any other damages (including lost 
profits), even if notified of the possibility of such damages.

All EDHEC Infra & Private Assets Indices and data are the exclusive property of EDHEC Infra & Private Assets. 
Information containing any historical information, data or analysis should not be taken as an indication or 
guarantee of any future performance, analysis, forecast or prediction. Past performance does not guarantee 
future results. In many cases, hypothetical, back-tested results were achieved by means of the retroactive 
application of a simulation model and, as such, the corresponding results have inherent limitations.

The Index returns shown do not represent the results of actual trading of investable assets/securities. 
EDHEC Infra & Private Assets maintains the Index and calculates the Index levels and performance shown 
or discussed but does not manage actual assets. Index returns do not reflect payment of any sales charges 
or fees an investor may pay to purchase the securities underlying the Index or investment funds that are 
intended to track the performance of the Index. The imposition of these fees and charges would cause actual 
and back-tested performance of the securities/fund to be lower than the Index performance shown. Back-
tested performance may not reflect the impact that any material market or economic factors might have had 
on the advisor’s management of actual client assets.

The information may be used to create works such as charts and reports. Limited extracts of information and/
or data derived from the information may be distributed or redistributed provided this is done infrequently 
in a non-systematic manner. The information may be used within the framework of investment activities 
provided that it is not done in connection with the marketing or promotion of any financial instrument or 
investment product that makes any explicit reference to the trademarks licensed to EDHEC Infra & Private 
Assets (EDHEC Infra & Private Assets, Scientific Infra & Private Assets and any other trademarks licensed 
to EDHEC Group) and that is based on, or seeks to match, the performance of the whole, or any part, of a 
EDHEC Infra & Private Assets index. Such use requires that the Subscriber first enters into a separate license 
agreement with EDHEC Infra & Private Assets. The Information may not be used to verify or correct other 
data or information from other sources.
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