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Abstract

In this paper, we develop a structural credit risk model that relies on cash flow data to derive
credit risk metrics. The model is useful for illiquid assets for which a time series of prices is not
observable. Our methodology is designed to require a parsimonious dataset of observable inputs,
and provides a clear link between an asset’s fundamental characteristics and its risk profile.
The model is flexible enough to value debt instruments with path-dependant cash flows, such
as mortgages and floating rate loans, and can incorporate various debt covenants, such as debt
refinancing, and restructuring options, as well as cash sweeps, dividend lockups, and reserve
accounts. The implementation of the model is illustrated with project finance debt, which is
highly illiquid, and suffers from a serious lack of price data. We show that the dynamics of the
debt service cover ratio (DSCR) along with the debt repayment profile and the debt covenants
is sufficient to implement our credit risk model. For reasonable parameter values of the DSCR
dynamics, the model reproduces stylised empirical regularities regarding the probabilities of
default for two generic types of infrastructure projects.
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Traditional structural models of credit risk assume that firm value is observable, and that default
occurs when firm value falls below the value of outstanding debt. This remains valid if firms
can raise new cash to make their debt payments, as long as the present value of their future
cash flows exceeds the value of their debt. In turn, this implies that the value of firm is public
information, and that the firm has unrestricted access to capital markets. For publicly traded
firms, these assumptions can seem reasonable. The market value of such firms can be obtained
from the market value of their publicly traded equity claims, which is public information, and
their access to capital markets allows them to raise funds to repay any outstanding debt, as long
as the firm value exceeds the total value of debt.

However, this is not the case for private firms and individuals. While they do have income that
lies in the future, the present value of these future cash flows is not public information as the
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claims against them are not publicly traded, and private firms and individuals cannot always
borrow against their future income, as their access to public capital is limited. Private firms do
not have access to public capital markets, and may fail to borrow against their future cash flows
due to asymmetric information (Sharpe (1990); Whited (1992)). Similarly, mortgage holders, and
individuals in general, cannot always borrow against their future income to make their mortgage
payments, due to moral hazard (Hubbard and Judd (1987); Hansen and Imrohoroğlu (1992)).
The most topical example is infrastructure project finance, in which the firm is structured as
stand-alone special purpose entity financed wth private debt and contractually barred from
raising additional borrowing.

In such cases, traditional credit risk models cannot be directly applied to value such private
illiquid debt.

In this paper, we develop a structural credit risk model that does not assume a frictionless access
to capital. Our model derives credit risk metrics using the free cashflow available for debt service
(CFADS), which is more easily observable for private illiquid instruments, and may differ across
firms with identical firm values but different access to capital. For a given firm value, the firms
with better access to capital markets would be able to raise more cash and have higher CFADS.
Default is triggered when the CFADS in a given period falls below the scheduled debt service in
that period.

Thus relating default and credit risk metrics to the CFADS gives a higher degree of generality to
the model, which can incorporate any restrictions on the access to capital markets, and allows
our model to be applicable to private firms and individual borrowers. Our model is flexible
enough to take into account path dependent cash flows, various debt covenants, such as dividend
lockup, technical default, reserve accounts, as well as debt refinancing and restructuring options.
Thus our model provides a clear link between underlying cash flow risk (revenue risk) profile,
debt covenants, and the credit risk profile.

Starting from the first structural model developed in Merton (1974), which only allows for debt
with a single repayment at the maturity, structural models have evolved to incorporate complex
capital structures (Jones, Mason, and Rosenfeld (1985), Jones, Mason, and Rosenfeld (1984),
Black and Cox (1976)), stochastic interest rates (Longstaff and Schwartz (1995), Heston (1993),
David C. Shimko, Naohiko Tejima and Deventer (1993)), stochastic volatility (Heston (1993),
Guo, Jarrow, and Zeng (2009)), jump diffusion process (Delianedis and Geske (2001), Zhou
(1997)), incomplete information (Bellalah (2001), Duffie and Lando (2001), Guo, Jarrow, and
Zeng (2009), Giesecke (2004), Giesecke (2006)), exogenous (Black and Cox (1976), Longstaff
and Schwartz (1995)) and endogenous (Leland (1994), Anderson and Sundaresan (1996)) de-
fault threshold, and strategic debt service (Anderson and Sundaresan (1996), Mella-Barral and
Perraudin (1997)).

Our model combines several elements of these existing structural models, such as general debt
repayment profiles, stochastic interest rates, and exogenous and endogenous default thresholds.
Its main contribution to the existing literature is to specify a structural model directly in terms
of the firms’ cash flows, instead of asset values, allowing for the integration of various debt
covenants, and incorporating approximate arbitrage bounds.

Specifying the model in terms of cash flows allows us to use observable quantities to calibrate
a model of illiquid debt credit risk, typically issued by private firms or individuals, the market
value of which is not available.

We show that understanding the dynamics of the firm’s debt service cover ratio (DSCR), along
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with the debt repayment profile and the debt covenants, which are observable, is sufficient to
implement a fully-fledged structural model.

Incorporating debt cash-flow related covenants allows taking into account the effects of ‘credit
events’ or covenant breaches which, while they do not necessarily correspond to a ”hard” default
(of payment), can nevertheless affect the risk profile of debt.

Incorporating approximate arbitrage bounds allows determining reasonable valuation bounds for
illiquid debt instruments, which may be valued differently by different investors with heteroge-
neous preferences.

We illustrate the implementation of this approach in the case project finance (PF) debt, which is
highly illiquid, and includes several debt covenants that are not taken into account in traditional
credit risk models. The DSCR is routinely monitored in such transactions.

For reasonable parameter values of the DSCR dynamics, the model reproduces stylised em-
pirical regularities regarding the probabilities of default for two generic types of infrastructure
projects.

1. Structural Credit Risk Model

In this section, we formalise our model for a generic debt contract, which may include several debt
covenants, using a stochastic model of the borrower’s free cash flow available for debt service,
which could correspond to the CFADS of a firm or an individual project, or to the income of an
individual, all of which are observable. Thus, the model can directly relate credit risk metrics to
the observable cash flow process. The model mainly consists of the following components:

1. A cash flow model that projects cash flows to different stakeholders given project charac-
teristics and debt covenants;

2. A model to risk-neutralise the cash flow distribution to incorporate investors’ risk prefer-
ences;

3. A Black Cox decomposition to determine present value of the debt.

Next, we outline each step of the valuation framework.

1.1. Cash Flow Dynamics

The first step in our valuation framework is to project the Cash Flow Available for Debt Service
(CFADS) in every state of the world. To avoid any issues due to scale dependence of the CFADS,
we write our cashflow model in terms of the Debt Service Cover Ratio (DSCR), which is related
to the CFADS in a deterministic manner according to

CFADSt = DSCRt × DSBC
t (1)

with DSBC
t , the base case debt service defined at financial close. The same relationship holds in

expectation.

In other words, as long as the base case debt service is known, we can reduce the question of
modelling the free cash flow to that of the dynamics of DSCRt, which, in its general form, can
be written as

d(DSCRt)

DSCRt
= µt + σtdWt, (2)
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where µt and σt may be stochastic. Thus the DSCR provides us a scale independent quantity
that is related to the CFADS in a deterministic manner, and is directly comparable across debt
investments of various sizes.

1.1.1. Default Point

In structural models of standard corporate debt, default is generally modelled as crossing a
threshold point below which the total value of the firm’s assets is less than its short and medium
term liabilities. This is because as long as the total value of the firm is higher than its near
term liabilities, equity holders can raise more cash by issuing new equity or debt, and satisfy
their current debt obligations. However, as discussed before, this is not always the case due to
borrowing restrictions.

Therefore, we define default directly as the inability to service debt, or to respect the debt
contract more generally, because debt contracts often impose other obligations on the borrower
in addition to debt repayment and create the possibility of technical defaults. Examples of such
technical defaults may include inability to maintain sufficient collateral, DSCR, or liquidity ratios
(Beneish and Press (1993); Chava and Roberts (2008)). Here, we specify our default point in
terms of the DSCR as

Defaultt ⇐⇒ DSCRt ≡
CFADSt

DSBC
t

< 1.x. (3)

A a “hard” default, i.e. an actual default of payment, occurs when the DSCR falls below 1.0, and
a technical default may be triggered when the DSCR falls below some level, say 1.05, specified
in the debt contract.

1.1.2. Distance to Default

Knowledge of the dynamics of DSCRt is sufficient to derive the firm’s ”distance to default”,
which is directly related to the probability of default. For example, in the Merton model (Merton
(1974)), the firm’s assets are assumed to follow a log-normal process with a constant mean and
volatility, and the physical probability of default is given by

p(t, T ) = N

(
ln(At

D ) + (µ− 1
2σ

2)(T − t)

σ
√
T − t

)
, (4)

where p(t, T ) is the cumulative probability of default between time t to T , At is the value of the
firm’s assets at time t, D is the default threshold, and µ and σ are the mean return and volatility
of firm’s assets.

Drawing from the Merton model, the KMV model (Crosbie and Bohn (2003)) defines the negative
of the quantity inside the brackets as the Distance to Default (DD)

DDT = −
ln(At

D ) + (µ− 1
2σ

2)(T − t)

σ
√
T − t

. (5)

The default probability is the area under the distribution above the DD point

p(t, T ) = N(−DDT ). (6)
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The distance to default can be approximated as (McNeil, Frey, and Embrechts (2005); Crosbie
and Bohn (2003))

Distance to Default = [Market value of assets]− [Default point]
[Market value of assets].[Asset volatility] , (7)

where the asset volatility is the standard deviation of the annual percentage change in the asset
value.

The KMV model premises that the DD is a sufficient statistic to arrive at a rank ordering of
default risk, where the numerator in (5) expresses the firm’s financial leverage or financial risk,
while the denominator reflects its business risk.

Expressing default in terms of the free cash available for debt service, Distance to Default at
time t can be defined as

DDt =
CFADSt − DSBC

t

σCFADStCFADS t

(8)

Using the definition of DSCRt in (1), the above expression can be written as:

DDt =
1

σCFADSt

(1− 1

DSCRt
) (9)

The above can be re-written as a sole function of DSCRt by expressing the volatility of CFADSt

as a function of that of DSCRt (as shown in 5.1)

DDt =
1

σDSCRt

DSBC
t−1

DSBC
t

(1− 1

DSCRt
) (10)

where σDSCRt
is the standard deviation of the annual percentage change in the DSCR value.

1.1.3. Cashflow Waterfall

Once, we have a model for the DSCR, we simulate DSCRt for every period over the relevant
horizon, and compute the corresponding CFADSt. The cashflows to different stakeholders can
then be projected by constructing a cashflow waterfall using debt covenants in the debt contract.
The cashflow waterfall distributes the CFADS across different stakeholders by following the
seniority of different claims specified in the debt contract. For instance, we start with the
senior debt payment, then move on to any reserve account requirements for senior debt, then to
mezzanine debt payment, then to any cash sweep requirements, and finally pay the remaining
cash to equity holders. We describe how to construct the cashflow waterfall in more detail in
Section 2.

1.2. Risk neutralisation

The aim of the risk-neutralisation is to incorporate investors’ risk preferences in the valuation
model. In structural credit risk models, this is done by risk-neutralising the distribution of the
underlying stochastic variable (firm value). The risk-neutralisation incorporates investors’ risk
aversion by discounting risky cash flows, and once the risk-neutral distribution of firm value has
been obtained, the securities issued by the firm can be valued by discounting their cash flows at
the riskfree rate.
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In the Merton model, the mapping between risk-neutral and physical probabilities of default is
given by (Kealhofer, 2003)

q(t, T ) = N
(
N−1[p(t, T )] + λT

)
, (11)

where q(t, T ) is the risk neutral cumulative probability of default between time t and T , and
λT = 1√

T

∫ T

t
µ(t′)−r(t′)

σ(t′) dt′ is the required Sharpe ratio over this horizon. When µ, r, and σ are
constant, the price of risk over horizon T becomes λT = µ−r

σ

√
T .

The corresponding risk neutral distribution for DSCR can be written as (Wang (2002))

F ∗(DSCRT ) = N
(
N−1[F (DSCRT )] + λT

)
, (12)

where F (DSCRT ) and F ∗(DSCRT ) are the physical and risk-neutral distributions of DSCRT .

If the physical distribution (F (x)) is normal (X ∼ N(µ, σ)), or lognormal (ln(X) ∼ N(µ, σ)),
then the risk neutral distribution (F ∗(x)) follows the same distribution (normal or lognormal)
with a shifted mean µ − λσ. Hence, the risk neutral distribution of the DSCR would the same
as the physical distribution of the DSCR but with a shifted mean.

1.2.1. Decomposition of Risk Into Traded and Non-Traded Components

The price of risk for an asset whose cash flows can be replicated using traded securities, is de-
termined by the price of risk of the replicating portfolio, according to no-arbitrage principle.
However, for assets whose cash flows are not spanned, i.e. cannot be perfectly replicated, by
traded securities, the price of risk cannot be uniquely determined using the prices of traded secu-
rities. This is often the case with private illiquid instruments, which are often weakly correlated
with publicly traded securities. In order to determine the required Sharpe ratio, λ, for such
assets, we can decompose the underlying CFADS process into a component that is spanned by
traded securities, and a component that is not (Froot and Stein (1998)). That is, we write the
current period’s CFADS as

CFADSt−1 = CFADST
t−1 + CFADSN

t−1,

where CFADST
t−1 represents the component of CFADS generated by the replicating portfolio of

traded securities, and CFADSN
t−1 represents the components of the CFADS not generated by

the replicating portfolio. Then, we can write the mean return on CFADS as (see 5.2)

µ = wT
t−1

σT

σ
λT + wN

t−1

σN

σ
λN ,

where we have defined wT (N) =
CFADS

T (N)
t−1

CFADSt−1
, and λT (N) = µT (N)−r

σT (N) .

This separation of risks serves two main purposes:

1. The required prices for hedgable risks can be set equal to the premium earned by the traded
portfolio, to prevent arbitrage.

2. The required prices for unhedgable risks would lie in an approximate arbitrage band, as
investors with heterogeneous preferences may be willing to pay different prices for similar
assets.
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The decomposition of CFADS into traded and untraded components is an empirical task, and
can only be done once sufficient data is available to estimate the correlations between the CFADS
and cash flows on traded securities. Thus, in the model implementation detailed in section 3,
we assume that the CFADS process is completely uncorrelated with traded securities, and hence
the wT is zero.

1.2.2. Choice of Bounds on Required Risk Premium

Before proceeding with the valuation model, we discuss our choice of bounds of the required
Sharpe ratio λ. We argue that the investors’ Sharpe ratios would lie in a band between 0 and
2.

Indeed, annualised Sharpe ratios for market indices typically fall below 1.0, and the largest
Sharpe ratios are often exhibited by hedge funds. Even for high performing hedge funds, the
only instances where the Sharpe ratio may exceed 2.0 are when the returns are not normally
distributed (Kat and Brooks (2001)). Non-normal distributions exhibit higher moment risks,
such as negative skewness, high kurtosis, and the Sharpe ratio (which only takes into account
the first two moments) can underestimate the riskiness of such investments.3

Since we assume normal distribution for the underlying risk in our examples,4 we argue that if
an asset offered Sharpe ratios above this upper limit of 2, they would become too attractive, and
such loans would soon disappear from the market. Therefore, in equilibrium, the Sharpe ratios
for assets would lie between 0 and 2.

Theoretical justification for bounds on risk/reward ratios is discussed in Cochrane and Saa-
Requejo (2000); Bernardo and Ledoit (2000). Cochrane and Saa-Requejo (2000) show that even
with high levels of risk aversion and volatility in future levels of consumption, Sharpe ratios do
not exceed 1.72. Hence, our choice of an upper limit of 2.0 seems justified from both an applied
and a theoretical perspective.

1.3. Black Cox Decomposition

The Black-Cox decomposition (Black and Cox (1976)) was devised to value corporate securities
when firms can reorganise. However, the original model assumes that the reorganisations happen
when the total value of the firm reaches a lower or an upper boundary, whereas our model is
driven by cashflow dynamics. Therefore, we modify the Black-Cox decomposition to take into
account this difference. We define 4 payout functions, as illustrated in Exhibit 1:

1. P (TD,CFADSTD
): final payment at the maturity of the contract. (We use TD to refer to

the maturity of the debt contract, which may be different from the maturity of the project
denoted earlier by T .)

2. P (τ,CFADSτ ): the value of the security if the CFADS reaches the lower boundary at time
τ .

3. P (τ,CFADSτ ): the value of the security if the CFADS reaches the upper boundary at time
τ .

3For example, the Long-Term Capital Management (LTCM) exhibited a Sharpe ratio of 4.35 before its demise
in 1998 (Lux (2002)). However, as is now well known, the hedge fund was exposed to some extreme risks, and
the return distribution was highly non normal.

4For non-normal distributions, the bounds can be specified using other risk reward ratios, such as the gain-loss
ratio introduced by Bernardo and Ledoit (2000).
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Exhibit 1: Black-Cox decomposition at one point in time. P (τ,CFADSτ ) is the payout function
if CFADS hits the upper boundary, P (τ,CFADSτ ) is the payout function if CFADS hits the lower
boundary, P (TD,CFADSTD ) is the payout function at the maturity of the debt, and p′(t,CFADSt) is
the payout function before CFADS hits any of the boundaries or reaches maturity.

Payoff

Time
TD

P (τ,CFADSτ )

P (τ,CFADSτ )

P (TD,CFADSTD
)

CFADSt

p′(t,CFADSt)
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4. p′(t,CFADSt): the payments made by the debt security until the maturity or reorganisa-
tion.

The total value of a security is the expected present value of the sum of these 4 payout functions
under the risk-neutral measure, discounted at the risk-free rate.

1.3.1. Restructuring

We consider the lower reorganisation boundary as the default boundary, where creditors have
the right to restructure their debt. The value of debt upon restructuring is determined by how
the debt is restructured, which in itself may be modelled as an outcome of strategic bargaining
between debt and equity holders. However, our aim in this paper is not to provide a model for
optimal restructuring, but only a credit risk model that can take into account such restructur-
ing.5

Hence, in this setting, we assume that the value of debt upon restructuring is exogenously given,
and leave the task of modelling the outcome of restructuring. We denote the debt value upon
restructuring, which provides the debt value at the lower boundary, by P (τ,CFADSτ ).

1.3.2. Refinancing

To model the outcome of reorganisations at the upper boundary (refinancing), we make a few
simplifying assumptions. Firstly, we ignore the effects of market conditions such as the level of
interest rates, demand for illiquid debt etc., and assume that the refinancing does happen as
soon as the CFADS hits a predetermined boundary. In other words, we assume that as soon
as the CFADSt crosses a certain threshold, the debt’s level of riskiness decreases sufficiently to
justify a reduction in the cost of debt, irrespective of market conditions. Secondly, we assume
that upon refinancing, the amount of debt outstanding is paid in full along with any costs or
penalties imposed by debt covenants.

In the Black-Cox decomposition discussed above, the value of debt at the upper reorganisation
boundary is given by

P (τ) = (1 + c)

[
TD∑
i=τ

e−rate(i−τ)DSi

]
, (13)

where c is the refinancing costs, rate is the original IRR of the loan, and DSBC
i is the scheduled

debt payment at time i.

1.3.3. Putting It All Together: Total Value of Debt

In the Black-Cox decomposition, the task of valuing a security largely reduces to identifying the
four payout functions of the security, and then determining the present value of those payouts,
which is described below.

5We propose such a model of private debt restructring in a forthcoming paper.
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Using κ(.) to denote the interval
(
CFADS(.),CFADS(.)

)
, we can write the value, h1(Vt, t), of the

first payout function as

h1(Vt, t) = E
[
e−rTD,t(TD−t)P (TD,CFADSTD

)
]

= e−rTD,t(TD−t)

∫
κ(T )

P (TD,CFADSTD
)dF ∗, (14)

where dF ∗ is the probability of CFADST falling between the two boundaries at time TD.

The value of the fourth component is obtained by summing over all the payouts from time t to
TD

h4(Vt, t) =

∫ TD

t

e−rs,t(s−t) ×

[∫
κ(s)

p′(CFADSs, s)dF
∗(CFADSs, s)

]
ds. (15)

In order to determine the contribution of the second and the third components, one needs to
determine the hitting times (times at which the CFADS hits a boundary), and the value of the
debt security at the corresponding boundary. We denote the first time CFADS hits the lower
boundary by TCFADS, and the first time CFADS hits the upper boundary by TCFADS. Further,
let F ∗

TCFADS
denote the risk neutral probability density function of the first passage time TCFADS,

and F ∗
TCFADS

denote the risk neutral probability density function of the first passage time TCFADS.
We can then write

h2(Vt, t) =

∫ T

t

e
−rTCFADS,t(TCFADS−t) × P (CFADSTCFADS , TCFADS)dF

∗
TCFADS

(16)

h3(Vt, t) =

∫ T

t

e
−rTCFADS,t(TCFADS−t)

P (CFADSTCFADS
, TCFADS)dF

∗
TCFADS

. (17)

F ∗
TCFADS

(TCFADS) and F ∗
TCFADS

(TCFADS) can be evaluated either analytically or numerically de-
pending on the stochastic process followed by the CFADSt.

The total value of the security is then

V S(Vt, t) =

i=4∑
i=1

hi(Vt, t), (18)

where hi(Vt, t) is the value of the security at time t from the ith payout function, and V S(Vt, t)
is the total value of the security at time t, and Vt is the value of all future cash flows at time
t.

It should be stressed that in the case of a restructuring option, all payout functions are not
determined by the original debt contract. In particular, the payout at the lower boundary
(default threshold) is not specified in the original contract, but is determined by the exercise of
the debt restructuring option.

Nevertheless, once the payout functions have been determined, we can discount the security’s
payouts to determine its present value. The appropriate discount rate in the case of risk neutral
valuation is the risk free rate, as the effects of risk preferences have already been incorporated
in the risk neutral probability measure.

That is, one can simply compute the expected payouts of security at every point in its life under
the risk neutral measure, and then discount them at the risk free rate to determine its fair
value.
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2. Algorithm

In this section, we provide an algorithm for the numerical implementation of the theoretical
model, as illustrated by Exhibit 2, assuming some common debt covenants such as reserve ac-
counts, cash sweeps, refinancing, and debt restructuring. Other debt covenants such clawback
provisions can also be implemented using within this setup. The main steps in implementing the
framework are

1. Obtain the base case debt schedule;
2. Select a model for DSCR distribution;
3. Determine the CFADS distribution using the DSCR distribution and the base case debt

schedule;
4. Risk-neutralise the CFADS distribution: Select a required Sharpe ratio, and shift the

original DSCR (or CFADS) distribution accordingly;
5. Obtain debt covenants: Debt covenants may contain reserve accounts, cash sweeps and

clawback provisions etc. and include the technical default threshold: the threshold below
which lenders have the right to step in and reschedule the debt;

6. Project CFADS paths for future periods using the distribution obtained above;
7. Determine if the debt can be refinanced: for each projected CFADS path, determine if the

cash flows have transitioned into a sufficiently low risk environment where the debt can be
refinanced, and determine the payout from refinancing;

8. Determine if there is a default: Compare the projected CFADS for each period with the
default threshold, and if CFADS falls below the scheduled debt service, determine payout
upon default;

9. Construct the cash flow waterfall with existing debt covenants: make payments according
to the seniorities established in the debt contract, which would include payments to debt
holders, reserve accounts, and equity holders;

10. Once cash flows to the debt holders have been projected, the present value of these cash
flows is calculated under the risk-neutral probability measure using the risk-free discount
rates.

3. Illustration with private infrastructure project debt

We provide a numerical implementation of our model using infrastructure project finance debt
as an example.

As suggested in the introduction, infrastructure projects are typically carried out through non-
recourse Project Finance (PF), which entails establishing a Special Purpose Entity (SPE) that
is financed in large part by private bank loans. PF debt shares several of the key characteristics
that our model aims to incorporate: 1) it is highly illiquid, with a serious lack of time series
of price data, and 2) there debt contract typically contains several debt covenants (Yescombe
(2002); Moody’s (2015); Standard and Poor’s (2013)).

Notable debt covenants include reserve accounts, cash sweeps, and step-in options. Reserve
accounts reserve a certain fraction of future period’s debt service. Cash sweeps are used to
prepay debt if the free cash flow to equity exceeds a pre-specified threshold. And step-in option
allows creditors to get involved in the firm management, restructure their debt, or take-over the
firm in the case of a default event.
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Exhibit 2: Flow chart for determination of cash flows to debt holders

Determine
default

threshold

Input debt
covenants

Determine
CFADS

dist.

Input
realised

DSCR &
BC debt
schedule

Project
future

CFADS
Is there a
default?

Is refi-
nancing
possible?

Restructure

Refinance

Senior
debt

payment
Reserve

accounts?
Reserve
payment

Cash
sweep?

Equity
payment

yes

yes

no

no

yes

satisfied

unsatisfied

above limit

below limit

12



Exhibit 3: Merchant and contracted infrastructure projects

Project Construction Tail DSCR Project First Final Base case
type period length profile maturity payment payment IRR

Merchant 5 year 6 year Rising 25 Year 6 Year 19 4%
Contracted 3 year 2 year Flat 25 Year 4 Year 23 3.5%

We implement our model for two generic types infrastructure projects, each of which represents
an ideal-type corresponding to numerous existing infrastructure projects. Stylised structures
observed at financial close in infrastructure projects finance include the use of a rising or a flat
base case DSCR profile and a more or less long “loan tail” i.e. the amount of time (and CFADS)
available between the orignal debt maturity date and the end of the project.

The existence of step-in rights in combination with the debt’s tail is what creates the value of
the embedded option to step-in for creditors.

3.0.1. DSCR Families

A rising DSCR profile exhibits both a rising mean and implies an increasing volatility of DSCRt.
That is, creditors demand a higher DSCR in the future to protect themselves against rising
conditional volatility of CFADS. Such projects also have longer ”tails” and exhibit between 70%
and 80% of initial senior leverage. Projects that are exposed to market risk, such as a power
plant that sells electricity at market prices or a toll road, are structured to have a rising DSCR
profile. We refer to these projects as Merchant infrastructure.

Conversely, a flat DSCR profile exhibits a constant mean and implies constant cash flow volatility.
Projects with little to no market risk are structured with a flat DSCR. They also have shorter tails
and a higher level of senior leverage, usually around 90%. Moreover, contrary to projects with
a rising DSCR, which effectively de-leverage as their lifecycle unfolds, projects with a constant
DSCR stay highly leveraged until the end of the debt’s life. Examples of these projects include
social infrastructure projects, such as schools or hospitals that receive a fixed payment from the
public sector. We refer to these projects as Contracted infrastructure.

Exhibit 3 provides our characterisation of the two generic project structures. Both projects
last for 25 year. The merchant project has a 5 year construction period, is financed with 75%
leverage6, the loan is repaid between year 6 and 19, hence a tail of 6 years.

The contracted infrastructure project has a 3 year construction period, is financed with 90%
leverage, and repays the loan between years 4 and 23, leaving a tail of 2 years. Total initial debt
is normalised to 1,000.

We calibrate the DSCR for the merchant project using a lognormal distribution with a constant
mean return of 1%, a constant volatility of returns of 3%, an initial DSCR of 1.4, and 20%
volatility of the initial DSCR.

d(DSCRt)

DSCRt
= µdt+ σdWt, (19)

6We define leverage as the ratio of the market value of the loan to the market value of the SPV at financial
close. Hence, the leverage is sensitive to the risk preferences of the investor. Different choices of risk preferences
(Sharpe ratio) may lead to different values of debt and SPV, and hence the leverage may change. The leverage
given in the table is for a benchmark investor with a Sharpe ratio of 1.
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Exhibit 4: DSCR models for the two DSCR families.

DSCR DSCR Mean Volatility Initial Volatility
profile distribution Return of returns expected DSCR of initial DSCR
Rising Lognormal 1% 3% 1.4 20%
Flat Normal NA NA 1.2 8%

Exhibit 5: Physical and risk-neutral DSCR distribution for merchant and contracted infrastructure
projects.

(a) DSCR models for merchant and contracted infrastructure projects.
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(b) Risk neutralised DSCR distributions for the economic and social infrastructure projects.
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Exhibit 6: Distance to default and probabilities of default for contracted and merchant infrastructure
projects.

(a) Risk neutral distance to default for the two DSCR families.
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(b) Comparison of probabilities of default and death for the two DSCR families. The black line includes
both technical and hard defaults. The Green line only includes hard defaults for projects that have not
defaulted before, and the red line shows the probability of project company going bankrupt, i.e. the
present value of its future cash flows falling below its debt value.
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The DSCR for the contracted project is modelled using a normal distribution with a mean DSCR
of 1.2, and a volatility of 8%.

DSCRt = E[DSCR] + σ(DSCR)dWt. (20)

We list the model parameters for the two DSCR distributions in Exhibit 4. The DSCR profiles
for these set of parameters are shown in Exhibit 5a.

The next step is to obtain the risk neutral distributions of the DSCR for both families, as
described in Section 1.2. The risk neutral distribution for the rising DSCR family is given
by

DSCRt = DSCRt−1e
(µ−λσ−0.5σ2)+σdWt , (21)

and the risk-neutral distribution for the flat DSCR family is given by

DSCRt = E[DSCRt]− λσ + σdWt. (22)

Thus, risk neutralisation effectively lowers the mean of the distribution by an amount λσ, which
is equivalent to discounting the cash flows, because the distribution of DSCR is directly related to
the distribution of CFADS. The amount of discounting is determined by two parameters: λ and
σ. λ denotes the price of risk, which is determined by the investor’s risk aversion, and σ denotes
the cash flow volatility. A more risk-averse investor that requires a higher price for risk, λ, would
discount the cash flows more. Similarly, for a given risk-aversion, a higher volatility, σ, would
make the asset more risky, and would cause investors to discount the cash flows more.

Exhibit 5b shows the risk-neutral distribution of DSCR for two choices of λ. For λ = 0, the risk-
neutral distribution coincides with the physical (statistical) distribution of DSCR. Hence, λ = 0
corresponds to an investor that does not discount risky cash flows, i.e. requires no premium for
bearing risk. For λ = 2, the risk neutral distribution always lies below the statistical distribution
of DSCR, as a result of the higher discounting.

Exhibit 6a shows the implied distance to default for three values of λ, which correspond to
different levels of risk-aversion. The higher the risk-aversion the lower the distance to default,
indicating that a more risk-averse investor prices the debt as if it had a higher probability of
default. Moreover, while the distance to default remains almost constant for the flat DSCR
family for any level of risk aversion, the shape of the distance to default is quite sensitive to the
investor’s risk aversion for the rising DSCR family, and goes from upward sloping to downward
sloping as the risk-aversion (λ) increases from 0 to 2. This is because in the case of flat DSCR
family, the mean and volatility of the DSCR stay constant, leaving the risk-return trade-off
unchanged over the life of the project. While, in contrast, in the case of rising DSCR family the
mean and volatility of DSCR go up in time, changing the risk-return profile. As a result, the
subjective discounting, and hence the distance to default, evolves differently over time, depending
on the investor’s level of risk aversion.

Finally, Exhibit 6b shows the probability of default (PD) for the two families. The PD decreases
rapidly for the rising DSCR family, while it stays nearly constant for the flat DSCR family. This
is because rising DSCR for merchant projects makes it unlikely for the project to default if it
survives first few years post construction. While the flat DSCR for contracted projects imply that
the loan is equally likely to default throughout the life of the loan. These probabilities of default
are largely in line with the empirical evidence on project finance default rates reported in Moody’s
(2012, 2013, 2015); Standard and Poor’s (2013): 1) Probability of default for contracted projects

16



is lower compared to the merchant projects, 2) Probability of default for merchant projects goes
down in time, while the probability of default for contracted projects stay roughly constant. This
suggests that the observed probabilities of default in project finance can be understood directly
in terms of the project’s financial structuring, and most importantly its DSCR profile.

4. Extensions

Our approach allows integrating a number of observable phenomena such as the dynamics of
debt service cover ratios and the terms and conditions of private debt contracts to implement a
structural credit risk framework with economically significant and empirically tractable default
thesholds defined in terms of cash flows.

It can be extended to include a model of debt restructuring post-default, a model of debt refi-
nancing or one of the ability of the private borrower to raise new cash at different points in time.
Modelling debt restructuring post-default is especially relevant if the value of creditors’ option
to ”step-in”, which we described earlier, is large and significantly impacts expected recovery
rates.

5. Appendix

5.1. Relation between DSCR and CFADS Volatility

Distance to Default for infrastructure project finance loans at time t can be defined as

DDt =
CFADSt − DSBC

t

σCFADSt
CFADSt

(23)

Using the definition of DSCRt in (??), the above expression can be written as:

DDt =
1

σCFADSt

(1− 1

DSCRt
) (24)

The above can be re-written as a sole function of DSCRt by expressing the volatility of CFADSt

as a function of that of DSCRt.

We have CFADSt = DSCRt × DSBC
t , and we know that σCFADSt

is expressed as a percentage
change in the asset value, thus:

rCFADSt
=

CFADSt

CFADSt−1
− 1

=
DSBC

t

DSBC
t−1

DSCRt

DSCRt−1
− 1

⇒ σCFADSt
= σ

(
DSBC

t

DSBC
t−1

DSCRt

DSCRt−1
− 1

)

=
DSBC

t

DSBC
t−1

σDSCRt . (25)
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Hence we can write the DDt as

DDt =
1

σDSCRt

DSBC
t−1

DSBC
t

(1− 1

DSCRt
) (26)

where σDSCRt
is the standard deviation of the annual percentage change in the DSCR value.

5.2. Decomposition of Risk Into Traded and Non-Traded Components

First, we write the current period’s CFADS as

CFADSt−1 = CFADST
t−1 + CFADSN

t−1,

where CFADST
t−1 represents the component of CFADS generated by the replicating portfolio,

and CFADSN
t−1 represents the components of the CFADS not generated by the replicating

portfolio. Then, we write the mean return on CFADS as

µ =
E[CFADSt]

CFADSt−1
− 1

=
E[CFADST

t ] + E[CFADSN
t ]

CFADSt−1
− 1

=
CFADST

t−1

CFADSt−1

E[CFADST
t ]

CFADST
t−1

+
CFADSN

t−1

CFADSt−1

E[CFADSN
t ]

CFADSN
t−1

− 1

= wT
t−1(1 + µT ) + wN

t−1(1 + µN )− 1

= wT
t−1µ

T + wN
t−1µ

N

= wT
t−1(r + λTσT ) + wN

t−1(r + λNσN )

⇒ µ = wT
t−1

σT

σ
λT + wN

t−1

σN

σ
λN ,

where we have defined wT (N) =
CFADS

T (N)
t−1

CFADSt−1
, and λT (N) = µT (N)−r

σT (N) .
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